# An Approach for Decadal Prediction over North America

Arun Kumar
Climate Prediction Center
<a href="mailto:arun.kumar@noaa.gov">arun.kumar@noaa.gov</a>

With thanks to Martin P. Hoerling, ESRL

# **Basic Premise of Weather and Climate Predictions**

 For any time-mean (daily, seasonal, decadal...), and for the variable one is interested in predicting, there is a "climatological (or a reference) Probability Density Function (PDF)";

 For specific conditions, the PDF can differ from (or sub-samples) the climatological PDF. For example, in an initial value prediction problem, a slow growth in perturbations around initial conditions, by sampling the sub-space of the climatological PDF, renders predictability.

# An Example for Seasonal Predictions

- As an example for the prediction of seasonal mean <u>precipitation</u>, difference between the climatological PDF and the PDF for a particular season may occur due to
  - Atmospheric initial conditions;
  - Local initial boundary conditions (e.g., soil moisture);
  - Remote initial boundary conditions (e.g., ENSO SST);
  - Initial conditions of external forcing (e.g., CO<sub>2</sub>; volcanic aerosols;...)
- Different factors affect the PDF on different time-scales, and with different magnitude

#### **Decadal Predictions**

- For decadal predictions predictability can arise from
  - Initial conditions in external forcings (e.g., CO<sub>2</sub>; volcanic aerosols)
  - Initial conditions in ocean (e.g., AMOC, PDV,...), land, atmosphere
- Consider two idealized climate systems
  - System A: All variations in decadal mean arise from daily weather - No decadal predictability from any initial condition
  - System B: All variations in decadal means arise from slow decadal modes (e.g., AMOC, PDV) or from slow changes in external forcings (CO<sub>2</sub>) When initialized, PDF of the mean for the subsequent decade can be distinguished from the reference PDF, and has higher predictability

# **Key Questions on Decadal Predictability & Predictions**

Is the nature more like System A or System B?

- What are the slowly evolving "decadal modes" and time-scale of their predictability?
- What is the influence of "even slower evolving" external forcing?

### An Approach for Decadal Prediction over North America

- Estimating response to GHG forcing for 2011-2020
  - Estimate response in SST due to CO<sub>2</sub> → Three estimates (one based on CMIP3 and two based on observational data)
  - Use SST estimates as a forcings in AMIP simulations to generate large ensemble of decadal means to estimate the "response" to external forcings
- Estimating magnitude of internal decadal variability
  - AMIP simulations from 1902-2004: Provide estimates of variability in decadal means due to
    - Atmospheric internal variability
    - Response due to different slow "internal modes" of SSTs
    - Sum of two is the total variability of decadal means (for a fixed external forcing)
  - CMIP3 preindustrial simulations: Provides an independent estimate for total variability of decadal means (for a fixed external forcing)



## Different Estimates of 2011-2010 SST related to external forcings Ribes et al., 2010

Hurrell



CMIP3

## Decadal Mean Signal (due to GHG forced SSTs)



# Decadal "Signal" and the Decadal "Noise"

|                           |       | AMI                          | P Pr                 | γ<br>eindustria<br>CMIP  |
|---------------------------|-------|------------------------------|----------------------|--------------------------|
| Canada PPT (%)            | +4.1  | 0.5                          | 0.7                  | 1.3                      |
| U.S. PPT (%)              | -2.1  | 2.7                          | 2.4                  | 3.6                      |
| Canada TMP (°C)           | +0.49 | 0.11                         | 0.13                 | 0.31                     |
| U.S. TMP (°C)             | +0.48 | 0.15                         | 0.15                 | 0.20                     |
| 2011–20<br>decadal signal |       | Internal decadal SST std dev | ATM noise<br>std dev | Decadal<br>noise std dev |

#### United States: 2011\_2020



#### United States: 2011\_2020



#### **PDF of Decadal Means**

- Based on GHG forced SST response
- PDF Mean/Median shift denotes magnitude of the decadal signal due to GHG SST effect
- PDF spread denotes magnitude of "atmospheric internal variability" (and does not include the component related to the "response" due to "internal modes" of SST variability).





#### **Summary**

- Except for precipitation over NA, PDFs are well separated from the climatological PDF (1971-2000 conditions), and the signal-to-noise ratio is large
- Weather-driven noise of decadal variability is appreciable, and signifies limitations on decadal predictability
- Need to extend similar analysis back in time, and develop verification statistics;
- Could also estimate SST trajectory for the next decade and further constrain the PDF.

#### References

- Hoerling et al., 2011: On North American Decadal Climate for 2011-2020. J. Climate, 24, 4519-4528.
- Ribes, A., J.-M. Azais, and S. Planton, 2010: Amethod for regional climate change detection using smooth temporal patterns. Climate Dyn., 391-406, doi:10.1007/s00382-009-0670-0.
- References on SST being the mediator for the terrestrial response to external forcings:
  - Hoerling, M., T. Xu, G. Bates, A. Kumar, and B. Jha, 2006: Warm oceans raise land temperatures. Eos, Trans. Amer. Geophys. Union, 87, doi:10.1029/2006EO190003
  - Hoerling M., A. Kumar, J. Eischeid, and B. Jha, 2008: What is causing the variability in global mean land temperature. Geophys. Res.Lett., 35, L23712, doi: 10.1029/2008GL035984.
  - Dommenget, D., 2009: The ocean's role in continental climate variability and change. J. Climate, 22, 4939–4952.
  - Compo, G. P., and P. D. Sardeshmukh, 2009: Oceanic influences on recent continental warming. Climate Dyn., 32, 333–342 doi:10.1007/s00382-008-0448-9.

## **Backup**

